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1.  Project Objectives: 

 

The proposed project aims to integrate NASA’s global soil moisture remote 

sensing and modeling data products into the U. S. Department of Agriculture’s Global 

Crop Production Decision Support System to improve the reliability and accuracy of 

USDA-Foreign Agricultural Service (FAS) global crop yield forecasts.  USDA’s crop 

yield forecasts affect decisions made by farmers, businesses, and governments by 

defining the fundamental conditions in commodity markets.  Regional and national crop 

yield forecasts are made by crop analysts based on the Crop Condition Data Retrieval and 

Evaluation (CADRE) Data Base Management System (DBMS) which resulted from 

USDA, NASA and NOAA joint research programs conducted in the 1970s and 1980s.  

Soil moisture is a major factor for crop yield fluctuations and CADRE DBMS currently 

estimates soil moisture from a 2-layer water balance model based on precipitation and 

temperature data from World Meteorological Organization (WMO) and US Air Force 

Weather Agency (AFWA).  Since the launch of NASA’s Earth Observing Satellite Aqua 

in 2002, a daily, global soil moisture data product has been generated from the Advanced 

Microwave Scanning Radiometer-EOS (AMSR-E).  The proposed project will 1) 

systematically assimilate this AMSR-E soil moisture data product into the CADRE 

DBMS 2-layer water balance model to generate and validate global surface and root zone 

soil moisture data products; 2) import these soil moisture data products into USDA-FAS’ 

CADRE DBMS; 3) evaluate the benefits of using these soil moisture data products; and 

4) streamline the data flow for operational routines.  Upon the successful completion of 

this project, USDA’s CADRE DBMS will receive a new NASA data stream of improved 

soil moisture information derived from satellite observations and land surface model data 

assimilation.  

 

2.  Background: 

 

The International Production Assessment Division (IPAD) is the agricultural 

forecasting division of the Office of Global Analysis (OGA) within the U.S. Department 

of Agriculture’s (USDA) Foreign Agricultural Service (FAS). IPAD is responsible for 

providing monthly global crop estimates and projected crop yields to monitor global crop 

conditions and ensure agricultural economic security. These estimates are used for 

decision making by the U.S. Government to determine food-insecure geographical 

regions and their potential for affecting national security. Consequently, IPAD plays an 

active role in monitoring and enhancing world food security by alerting policymakers of 

potential food security problems well in advance, working closely with the U.S. Agency 

for International Development (USAID), and providing direct support to the Famine 

Early Warning System (FEWS-NET).  

 IPAD relies on many information sources and utilizes a convergence of evidence 

methodology for comparing data, minimizing risk of error, and maximizing the reliability 

of foreign crop production, area, and yield forecasts during the growing season. In an 

effort to determine anomalous meteorological conditions indicating times of water stress 

or flooding which impact these crop condition assessments, IPAD analysts compare 

current global agro-meteorological conditions against a database of archived satellite 

imagery and crop yields. To this end, estimates from IPAD are derived from a merging of 



many data sources including satellite remote sensing and ground observations, and more 

than 20 years of climatology and crop behavior data over key agricultural areas. To most 

efficiently manage these data sources, IPAD has developed a series of analytical tools, 

crop models, and hazard calendars within a Crop Condition Data Retrieval and 

Evaluation (CADRE) Data Base Management System (DBMS).  

 

 A crucial requirement of these global crop yield forecasts is the regional 

characterization of root-zone soil moisture. By capturing the impact of agricultural 

drought (i.e. the lack of root-zone soil moisture) on crop health and eventual yield, IPAD 

analysts can better prepare for and prevent possible food shortages and agricultural 

disasters. However, the accurate estimation of regional soil moisture dynamics based on 

sparse ground measurements is difficult
 
due to soil moisture heterogeneity caused by the 

spatial heterogeneity of precipitation events, land cover, soil properties, and topography. 

In particular, temporal and spatial resolution of root-zone soil moisture is important for 

predicting adequate soil profile wetting and drying between precipitation events. Thus, 

root-zone soil moisture availability is a major factor impacting IPAD yield forecasts. 

 

 The CADRE DBMS system estimates root-zone soil moisture (and therefore the 

severity of agricultural drought) using a modified 2-layer Palmer model forced by 

precipitation and temperature datasets operationally obtained from the World 

Meteorological Organization (WMO)  and U.S. Air Force Weather Agency (AFWA).  

However, soil moisture estimates derived from this type of global modeling suffer from a 

range of deficiencies including: poor quality rainfall input, uncertain parameter values 

and over-simplified vertical and lateral physics [1-2]. This work aims at reducing the 

impact of these deficiencies on IPAD root-zone soil moisture estimates by assimilating 

surface soil moisture observations from the NASA Advanced Microwave Scanning 

Radiometer (AMSR-E) into CADRE using an Ensemble Kalman Filter (EnKF). In this 

way, surface soil moisture dynamics observed by AMSR-E can be used to indirectly 

update the root-zone through the vertical soil moisture coupling of the 2-layer soil 

moisture model. The hypothesis being that the improved temporal resolution and spatial 

coverage of AMSR-E retrievals over ground station data and model outputs used by 

IPAD will provide a better characterization of surface wetness and enable more accurate 

crop monitoring in key agricultural areas. While assimilation strategies for improved 

root-zone soil moisture monitoring have recently been presented [2-5], there still remains 

a need for a quantitative evaluation of the utility of these assimilation strategies for soil 

profile estimation. This report will summarize the data assimilation system developed for 

this project and describe the implementation of a data denial strategy to validate that the 

system is capable of providing improved root-zone soil moisture fields to the CADRE 

DBMS system. The assimilated surface soil moisture retrievals and IPAD water balance 

model are described in Sections 2.A and 2.B, respectively.  Section 2.C describes the 

EnKF-based data assimilation system which is applied within the data denial 

experimental framework described in Section 3.  Results are presented in Section 4 and 

the current operational status of project is described in Section 5. 

 

 

 



A.. AMSR-E Surface Soil Moisture Retrievals 

 

 This work is based on near-daily surface soil moisture estimates derived from the 

satellite-based Advanced Microwave Scanning Radiometer (AMSR-E). AMSR-E was 

launched in 2002 on board the NASA EOS Aqua satellite to provide global coverage of 

passive microwave measurements of terrestrial, oceanic, and atmospheric variables for 

the investigation of global water and energy cycles [6]. Aqua follows a sun-synchronous 

orbit with equatorial crossing at approximately 1330 Local Standard Time (LST) and 

completes full global coverage every 2-3 days at the equator and more frequently at 

higher altitudes. AMSR-E measures brightness temperatures at six frequencies, 6.92, 

10.65, 18.7, 23.8, 36.5, and 89.0 GHz, with vertical and horizontal polarizations at each 

frequency. With a fixed incidence angle of 54.8° and an altitude of 705 km, AMSR-E 

provides a conically scanning footprint pattern with a swath width of 1445 km. The mean 

footprint diameter ranges from 56 km at    6.92 GHz to 5 km at 89 GHz.              

                       

 In our approach, we retrieve surface soil moisture estimates from AMSR-E 

brightness temperatures based upon an algorithm developed by Jackson [7]. Jackson’s 

retrieval method utilizes a physically-based forward model of microwave emission from 

the soil-vegetation-atmosphere medium. The algorithm uses horizontally-polarized 

AMSR-E brightness temperatures at 10.7 GHz re-scaled to a ¼° grid. The effective 

emissivity from each pixel is calculated by independently modeling the microwave 

emission from the bare soil layer and the emission and attenuation from the vegetation 

layer. For proper implementation, the model requires ancillary input data including soil 

texture and porosity, land cover, the Normalized Difference Vegetation Index (NDVI). 

Surface temperature is estimated from the AMSR-E vertically-polarized 37 GHz 

brightness temperature according to the equation presented in [8]. Effects of atmospheric 

scattering at these wavelengths (10.7 GHz) are considered to be minimal and neglected. 

Within this framework, observed brightness temperatures from AMSR-E are divided by 

measured soil temperature to estimate emissivity over each pixel. This measured 

emissivity is then isolated and used to solve for volumetric soil moisture by computing 

the dielectric constant from the dielectric mixing model [9], soil reflectivity from the 

Fresnel equations [10], and corrected for vegetation effects as in [11].  In this way, a 

near-daily soil moisture product is obtained by combining retrievals obtained from both 

ascending (1:30 pm) and descending (1:30 am) AMSR-E overpasses. The version of this 

algorithm applied to AMSR-E brightness temperatures can be found in [12].  Recent 

evaluation results suggest that this single-polarization approach is more effective at 

retrieving soil moisture over the continental United States than competing approaches 

based on multi-polarization brightness temperature [13].  Traditionally, the sampling 

depth of soil moisture estimates at 10.7 GHz is assumed to be approximately 1 cm 

depending on soil type, moisture content, etc. For this study, the soil moisture estimates 

from AMSR-E are assumed to represent a soil depth comparable to the surface layer used 

by the IPAD modified Palmer model. Within the context described here, the risk of error 

introduced from this mismatch of sampling and modeling depth is considered minimal.  

 

 

 



B. The IPAD Water Balance Model 

 

 The IPAD DBMS utilizes a wealth of data sources including over 3000 ground 

observations from the WMO and climatological estimates provided by the AFWA. The 

primary inputs for the IPAD water balance model are daily maximum and minimum 

temperature and precipitation accumulation.  The AFWA precipitation and temperature 

products are provided by the AFWA Agricultural Meteorology modeling system 

(AGRMET). Daily estimates are calculated from 3-hourly analyses of merged gauge 

reports from AFWA’s global surface observation database and remotely-sensed 

climatological data. Consequently, the AFWA rain product is of high quality in specific 

regions of the world (e.g. North America) in which high-quality daily rain gauge 

observations are operationally available.  However, in other more data poor regions of the 

world, it relies heavily on uncertain satellite-based rainfall retrievals, and is prone to high 

levels of error in short-term rainfall accumulation estimates.  

 

 The two-layer soil moisture model used by IPAD was first described by Palmer 

[14]. The two-layer soil moisture model is a bookkeeping method that accounts for the 

water gained or lost in the soil profile by recording the amount of water withdrawn by 

evapotranspiration and replenished by precipitation. The available soil moisture capacity 

in for the soil column is calculated from the available water content (AWC) of both layers 

(i.e., AWCsz and AWCrz for the surface and root-zone model layers respectively) derived 

from the FAO Digital Soil Map of the World [15], soil texture and the total depth of the 

soil column. The Palmer model surface layer is assumed to contain 2.54 cm of water at 

soil saturation (i.e., AWCsz = 2.54 cm), and the lower layer depends on the depth of the 

effective root-zone calculated from AWCrz. Daily estimates of minimum and maximum 

temperature and precipitation are applied to the soil moisture model in order to calculate 

the daily amount of soil moisture withdrawn by evapotranspiration and replenished by 

precipitation for two layers of soil. Although the Palmer soil moisture model is simplistic 

relative to more recent advances in hydrologic modeling, IPAD continues to use this 

model in order to take advantage of its computational efficiency and historical database 

of global soil moisture climatology within their DBMS. The purpose of this analysis is to 

quantify the added value of assimilating surface soil moisture relative to an established 

operational DBMS.  Therefore, in order to accurately represent the current operational 

IPAD baseline system, we also utilize the Palmer model with our data assimilation 

system. For each day, soil moisture in the Palmer model surface layer θsz is calculated as: 

 

                      FPEPszsz −−+=
'θθ                       (1) 

      

where θ′sz is soil moisture content in the surface layer from the previous day, P is 

precipitation, PE is potential evaporation, and F is a diffusion term discussed below. No 

runoff is calculated for this version of the model; excess water is lost from the system. 

The root-zone soil moisture θrz is adjusted as: 

 

    FPEP szrzrz +∆+−+= )(' θθθ      (2)                

     



where θ′rz is the previous day root-zone soil moisture and ∆θsz the net daily change in 

surface soil moisture. Thus, loss from the root-zone depends on initial moisture content 

as well as on the PE and P.  A no flow boundary condition is assumed for the bottom of 

the root-zone layer. In this context, all soil moisture model calculations are in units of 

depth. For compatibility with the volumetric soil moisture retrievals from AMSR-E, we 

transformed soil moisture units from depth to volumetric content during implementation 

of our data assimilation system (Section 2.C) using soil porosity data from the Soil 

Survey Geographic (SSURGO) database. Consequently, data assimilation results shown 

later are in volumetric units. 

 

  IPAD has altered Palmer’s original two-layer soil moisture model shown above 

via a number of specific modifications.  First, moisture is depleted from the lower layer 

before the surface layer is completely dry, thus allowing for a more gradual and realistic 

depletion of the surface layer. The modified extraction function allows moisture to be 

depleted from the surface layer at the potential evapotranspiration rate up to 75% of the 

surface capacity (or 75% of 2.54 cm of water).  When the surface layer is below 75% 

capacity, moisture is extracted from the surface at a reduced rate with the lower layer 

making up the remaining requirement. In addition, IPAD has changed the model 

calculation of potential evapotranspiration to be based on the modified FAO Penman-

Monteith equation described in [16]. Due to the lack of a global data set of wind speed 

and relative humidity within the IPAD DBMS, the potential evapotranspiration 

calculations assume a constant wind speed of 2 m/s and estimate vapor pressure deficit 

from minimum and maximum temperature. Atmospheric pressure and extraterrestrial 

radiation are calculated from station latitude and elevation. In its current operational 

implementation, IPAD applies the Palmer model at daily time steps within a 

stereographic projection with approximately 47 km horizontal grid spacing at 60° 

latitude. Here, all data have been re-gridded to a ¼° resolution mesh for compatibility 

with the AMSR-E soil moisture observations as discussed below.  

 

 In data assimilation systems, the constraint of root-zone soil moisture values using 

surface observations is based on the presence of cross-correlation between errors in 

surface and root-zone soil moisture predictions made by the model.  Such cross-

correlation typically requires the presence of diffusion by which anomalies in one layer 

are vertically propagated into neighboring layers.  Within the 2-layer Palmer model used 

by IPAD, vertical coupling between layers is relatively simplistic and allows recharge of 

the top layer (and diffusion to the root-zone) based on an assigned value of fractional 

water volume.  Below the fractional water threshold of 75%, root-zone moisture recharge 

is halted. This artificial truncation of soil moisture diffusion results in a complete loss of 

coupling between the two layers and reduces the value of surface soil moisture retrievals 

for constraining deeper root-zone moisture. However, this problem can be eased with the 

addition of a simple linear diffusion term F 

 

    F =α (θsz /AWCsz – θrz /AWCrz)                       (3) 

 

where α is a constant diffusion coefficient. Surface and root-zone soil moisture contents 

are then adjusted by F following (1) and (2).   



 

 This added diffusion term results in a more gradual soil moisture gradient 

between the surface and root-zone layers, and ensures sufficient vertical communication 

between the two layers. Here the α coefficient in (3) has been assigned a constant value 

of 17.9 mm based on a sensitivity analysis as described later. The impact of this 

modification on data assimilation results will be discussed later. 

 

C. The Ensemble Kalman Filter 

 

 The increased availability of satellite remote sensing products has led to improved 

meteorological, oceanographic, and land surface predictions through the merging of 

satellite observations with numerical models [17-18]. Sequential data assimilation 

techniques use auto-recursive analyses to optimally merge model estimates with state 

observations. If properly done, such merging should yield improved state predictions 

relative to the accuracy of either the model or observations.  Filtering-based applications 

of data assimilation techniques rely on the availability of an observation y at time k that 

can be related to the state vector x via a known observation operator H 

 

                                  kkkk vxHy += )(                              (4) 

 

where vk represents a random perturbation of the observations. Here, such perturbations 

are assumed to be Gaussian with a known covariance of R.   

 

 In this study, a 1-dimensional Ensemble Kalman filter (EnKF) is applied. The 

EnKF is a nonlinear extension of the standard Kalman filter first demonstrated by [19] 

and has been successfully applied to land surface forecasting problems [20]. It is based 

on adding random errors to the model’s internal states or forcing to produce an ensemble 

of model states x
i
k and predicted observations Hk(x

i
k) where i refers to a particular 

realization within the ensemble. This Monte Carlo ensemble is then used to sample the 

error covariance of the remotely-sensed observations (CMk) and the cross-correlation 

between these observations and each forecasted state variable (CYMk).  The updating step 

of the EnKF utilizes these error covariance estimates to optimally update forecasts in 

response to observations based on the calculation of the Kalman gain, defined as  
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and the application of the Kalman filter updating equation  
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to each realization within the ensemble.  Note that “-“ and “+” notation is used to signify 

state estimates made before and after updating in response to observations at time k.  As 

in (4), vk represents a random Gaussian perturbation of the observation with covariance R.  

After updating via (6), each ensemble member is forecasted in time until the next 



available observation using the dynamic model.  The EnKF state estimate at any time is 

obtained by sampling the mean of the ensemble. 

 

 Our particular implementation of the EnKF integrates soil moisture observations 

from AMSR-E with the modified Palmer two-layer soil moisture model described in 

Section 2.B by applying a 1-dimensional EnKF at daily time-steps when AMSR-E 

observations are available. However, before the AMSR-E soil moisture retrievals can be 

assimilated, the modeled and observed (AMSR-E) data must be scaled to a common 

climatology to reduce potential biases and differences in dynamic range that commonly 

exist between modeled and observed surface soil moisture products. By removing time-

invariant biases from the observation data, the two datasets can be optimally merged to 

allow more efficient assimilation [1]. The removal of multiplicative and additive errors in 

this way also provides an objective basis for the comparison of soil moisture anomalies 

and a basis for properly validating the system.  

 

 To establish a representative climatology for both AMSR-E and IPAD modified 

Palmer model surface soil moisture datasets, we constructed a retrospective analysis of 

archived data from June 2002 to June 2007. The AMSR-E product was rescaled using 

standard normal deviates based on a mean and standard deviation climatology of AMSR-

E soil moisture retrievals and the surface layer of the IPAD soil moisture model within a 

31-day sampling window centered on a particular day of the year. In this way, the 

AMSR-E retrievals are transformed such that their climatology is comparable to the 

climatology for top layer soil moisture estimates produced by the IPAD-modified Palmer 

model. The climatologically rescaled AMSR-E data are then introduced as observations 

to the EnKF using sequential observations of AMSR-E and climatological data. Since 

AMSR-E observations are pre-processed into surface soil moisture estimates (assumed to 

be consistent with the top layer of the Palmer model), our observation operator in (4, 6) is 

simply H = (1, 0).   

 

 As noted above, the implementation of the EnKF requires that a Monte Carlo 

ensemble of Palmer model predictions be generated.  Because modeling parameters are 

static within the Palmer water balance, we assume a temporally constant modeling error 

for the surface layer. Each member of the model ensemble is generated by applying 

independent Gaussian noise directly to the Palmer model surface and root-zone soil 

moisture states.  The statistical properties of this noise determine the size of CM and 

CYM in (5).  Here, surface layer perturbations were assumed to be mean-zero with a 

standard deviation of 0.03 cm
3
/cm

3
. Our choice of model error is based on a priori model 

runs over the United States and is considered realistic.  The same stochastic perturbation 

is also applied to the root-zone after it has been scaled by the AWCrz to ensure a 

physically consistent volumetric perturbation for the entire soil column (i.e., shifts in the 

root-zone layer are dampened relative to the surface layer according to the soil column 

water capacity). In this way, the perturbations diminish with increases in soil column 

depth, porosity, and water holding capacity.  

 

 An additional challenge in applying the EnKF to the assimilation of surface soil 

moisture retrievals into a land surface model is the accurate estimation of the observation 



error R in (5).  The relative magnitude of R (versus competing errors assumed to be 

present in the model, i.e. CM) determines the size of K in (5) and thus the amount of 

weight applied to observations upon the implementation of (6). The accuracy of remotely 

sensed passive microwave observations vary greatly over different land cover types due 

to signal attenuation by vegetation and increased scattering over rough terrain [10, 21]. 

At the wavelengths used by AMSR-E, the accuracy of observed soil moisture is 

significantly degraded over areas of vegetation water content greater than approximately 

5 kg/m
2 

[22]. Therefore, regarding AMSR-E soil moisture accuracy, R should correlate 

significantly with vegetation density. We exploit this relation by adjusting the magnitude 

of R in relation to vegetation type and canopy opacity τ based on vegetation water 

content wc as in 
)exp(τoRR =        (7) 

and 

θ
τ

cos

* cwb
=

       (8) 

 

where θ is the AMSR-E incidence angle and b is a coefficient that depends on vegetation 

type and is assigned based on published values for similar sensor parameters and land 

cover conditions [11]. In this case, b is set to 0.3 for wooded grasslands and shrubs, 

grasslands, and croplands, and 0.28 for closed bush lands, open shrub lands, and bare 

soil. Since the accuracy of AMSR-E soil moisture retrievals quickly diminishes in areas 

of vegetation water content above 5.0 kg/m
2
, R is set to 1.00 cm

3
/cm

3
 (effectively driving 

K to zero) for these pixels (e.g. pixels classified as forested). To discern land cover 

classes, we apply the 8-km MODIS land cover classification data set produced by the 

University of Maryland (http://glcf.umiacs.umd.edu/).   

              
Figure 1. A schematic of the data denial experiment utilized in this analysis.  The experiment is 

based on the use of AMSR-E soil moisture retrievals and an EnKF to correct the open loop 

experiment (forced by the satellite-based TRMM 3B40RT rainfall product) back to benchmark 

results (obtained using the gauge-correct AFWA rainfall product).  



 

 

The EnKF was employed with an ensemble of 30 members perturbed with 

Gaussian noise having an initial standard deviation of Ro = 0.15 cm
3
/cm

3
. Equation (7) 

was derived by performing multiple runs of the filter over many different land cover 

types (i.e., various b and cw combinations) for the entire dataset and incrementally 

adjusting R until the normalized filter innovations best matched those expected from a 

properly parameterized filter (i.e., serially uncorrelated and having a temporal second 

moment of one) [23]. This dynamic approach ensures that the filter is placing an 

appropriate relative weight on the model predictions and AMSR-E observations over 

varied landscapes.  As noted above, forested areas of the domain are masked from the 

analysis due to the inability of AMSR-E to estimate soil moisture in such areas. 
 

3.  Data Assimilation System Evaluation Methodology 

 

 For evaluation of the data assimilation system described above, we focus on the 

creation of a 5-year (06/19/2002 – 06/19/2007), ¼° latitude/longitude root-zone soil 

moisture analysis product over North America. A data denial framework is employed to 

evaluate the analysis product by comparing three separate root-zone soil moisture 

products. The three products are created by 1) forcing the 2-layer Palmer model with a 

high-quality precipitation product (the benchmark run) 2) forcing the model with a lower-

quality satellite-based precipitation data set (the open loop run) and 3) employing an 

EnKF to assimilate AMSR-E soil moisture retrievals into the open loop run (the EnKF 

run).  The AFWA gauge-corrected precipitation data described in Section 2 was used for 

the benchmark loop. This product is a merged analysis of blended surface observations 

and remotely-sensed estimates.  Consequently, it is of relatively high-quality in areas of 

world like our North American study domain which possess good rain gauge coverage.  

For precipitation forcing in the open loop and EnKF loop, we applied the uncorrected 

real-time precipitation 3B40RT product provided by the Tropical Rainfall Measuring 

Mission (TRMM) [24]. 3B40RT is a real-time, satellite-only precipitation product that 

accurately reflects the challenges of obtaining operational rainfall information within 

data-poor land areas lacking adequate ground observations. Unlike the AFWA product, it 

is not corrected using ground rain gauge data over North America.  This lack of ground 

gage correction typically introduces root-mean-squared errors (RMSE) of 5 to 10 

mm/day into TRMM 3B40RT daily rainfall accumulation amounts over the central 

United States [25].   

 



     
Figure 2. Time-series of benchmark soil moisture (blue), EnKF soil moisture (red), open loop run 

soil moisture (green), and AFWA precipitation (black) over cropland area for the ¼° grid cell 

location at 39° N and 90° W. 

 

Errors in the open loop provide a reasonable approximation of current levels of 

uncertainty within soil moisture products currently ingested in the USDA FAS CADRE 

DBMS system.  Our purpose here is to quantify the added value of our data assimilation 

system – above and beyond the current baseline given by the “open loop” results.  

Following the procedure outlined in Section 2, the AMSR-E observations have been 

scaled to the climatology of the TRMM-forced Palmer model. Using this approach, the 

application of the EnKF to assimilate remotely-sensed soil moisture retrievals in the 

EnKF run can be evaluated based on how efficiently it transforms root-zone soil moisture 

results from the open run (generated with the least accurate rainfall product) to match 

benchmark root-zone soil moisture  (generated using the most accurate rainfall product). 

A flowchart of this data denial process is demonstrated in Figure 1. Note that similar 

approaches have been successfully applied in previous attempts to evaluate the added 

benefit of assimilating remotely-sensed observations into a land surface model (see e.g. 

[3] and [13]).   
 

 Modeled and observed soil moistures are often not representative of each other 

due to inconsistent modeling and sensing depths and time-invariant multiplicative and 

additive errors [26]. In this case, we are evaluating the performance of the EnKF using 

two distinct rainfall products, each having a unique climatology and bias. As a result, 

proper validation of the soil moisture analysis products is challenging. Therefore, to 

maintain continuity between the rainfall products and ensure a true evaluation of the 

EnKF performance, we removed the long-term bias from the TRMM data (i.e., matched 

long-term mean of the AFWA precipitation) and scaled the AMSR-E observations to the 

bias corrected TRMM forced (i.e., “open loop”) model run estimates prior the its 

inclusion into either the open loop or EnKF runs. 



 

 Using the approach in Figure 1, we quantitatively evaluate the filter performance 

by calculating the improvement in RMSE, determined relative to the benchmark run, 

found between the open loop and EnKF runs. The RMSE difference noted upon 

assimilation of AMSR-E soil moisture is referred to as the “delta RMSE”. By taking 

these differences, we can evaluate the degree of improvement provided by the EnKF 

application from the sign and size of delta RMSE values.   

 

 In addition, after each run was completed, anomalies were calculated from 

climatological expectations for each model run.  The calculation of climatological 

expectations on a given day of the year are based on the available multi-year heritage of 

each soil moisture product (2002 to 2007) and the 31-day mean sampling approach 

described in Section 2. From these anomaly values, another diagnostic was calculated 

from the difference in Pearson’s correlation coefficient r between the runs (i.e., “delta 

r”). Because seasonal variations are removed during this procedure, improvements in 

such an “anomaly” delta r metric can be attributed solely to enhanced skill with regard to 

anomaly detection and is independent of a product’s particular climatology and/or bias. 

To accurately forecast deviations in yield versus historical expectations, IPAD analysts 

are primarily interested in identifying anomalies in root-zone soil water anomaly 

conditions (i.e. relative wet or relative dry versus an expected seasonal soil moisture 

climatology). Therefore, it is expected that a comparison of delta r anomalies, reflecting 

areas/conditions of interest, is an appropriate test of the potential added value of the 

integrated product for IPAD agricultural drought monitoring applications.  

 

4.  Data Assimilation System Evaluation Results 

 

 We aim to show through our data denial strategy that complementary information 

from AMSR-E observations can improve the spatial and temporal characterization of 

root-zone soil moisture when applied to the IPAD modified Palmer model. The target 

areas for IPAD are non-forested land – particularly regions with potential for agricultural 

development. As an initial exercise, the impact of including the vertical diffusion term in 

(2) was investigated by applying the data denial strategy with multiple choices for α 

ranging from 0 to 25 mm.  In general, results associated with the inclusion of the 

diffusion term (i.e. α > 0)  lead to improved data denial delta r and delta RMSE results 

relative to the baseline case of no diffusion (α = 0).  This indicates that inclusion of the 

term results in a more efficient correction of root-zone soil moisture errors associated 

with poor rainfall forcing.  Since it appears to provide a more realistic representation of 

vertical water flow, the diffusive term in (2) was included in all subsequent denial 

exercises.  A specific value of α = 17.9 mm was selected based on an analysis of the 

sensitivity between delta r and α.  However, modest levels of sensitivity between delta r 

and α suggest that the following results are relatively insensitive to the detailed 

specification of α.  

  

 Assessment of the system for particular land cover types is possible by evaluating 

time series generated during the entire 5-year simulation period over selected areas. 

Figure 2 shows a time series of the benchmark (blue lines), open loop (green lines), 



EnKF cases (red lines), and AFWA precipitation product for a ¼° pixel box in the South-

Central United States (39° N and 90° W). Land cover in this pixel is predominantly 

cropland, with maximum vegetation water content approaching 4 kg/m
2
.  Note how 

contrasts in the accuracy of rainfall products forcing between the benchmark and open 

runs leads to substantial differences in both surface and root-zone soil moisture 

predictions. These differences are partially compensated for via the EnKF-based 

assimilation of surface soil moisture retrievals. Despite the fact that AMSR-E cannot 

directly observe the root-zone, application of the EnKF (red lines) ensures that the 

benefits of the surface observations extend downward into the root-zone, and the EnKF 

root-zone soil moisture predictions are better able to capture benchmark variations 

relative to the open loop case. These improvements are realized in both the surface and 

root-zone soil moisture layers throughout much of the time-series. For example, during 

the latter half of 2003, multiple precipitation events are missed by the open loop. It is 

clear during this time period that assimilation of the AMSR-E observations leads to more 

realistic soil moisture predictions (i.e., higher correlation with benchmark run) in both 

layers. For this particular location, the application of the EnKF leads to a delta r of 0.09 

for root-zone anomalies and a delta RMSE of -0.02 cm
3
/cm

3
 for root-zone raw values. 

The agricultural landscape at this site is a good representation of an IPAD target area and 

effectively demonstrates the added value of assimilating AMSR-E observations into the 

TRMM-forced, IPAD-modified Palmer model.   

 

 In order to examine the geographic extent of areas in which the assimilation of 

AMSR-E soil moisture retrievals adds value to IPAD root-zone soil moisture model 

estimates, the analysis in Figure 2 was extended over the North American continent 

between 23° N - 50° N and 128° W – 65° W. For each ¼° grid in this domain, delta 

RMSE and delta r values were calculated using daily soil moisture estimates obtained 

between 06/19/2002 – 06/19/2007. To reduce the impact of snow on our analysis, we 

examined only the growing season (May – October) for the region north of 42° N and 

east of 112° W. The analysis for the remainder of the North American region was applied 

to the entire year. Figure 3 plots the root-zone soil moisture delta RMSE. Red (negative) 

pixels indicate areas of reduced delta RMSE and improvement upon the non-updated, 

TRMM-forced open loop. In comparison, blue (positive) pixels represent an increase in 

error and degradation of the soil moisture estimates.  Because K in (5) is effectively set to 

zero for very densely vegetated areas (i.e., wc > 5.0 kg/m
2
), a large portion of the domain 

has no delta RMSE, particularly in the Northeast and Northwest United States. This 

figure illustrates the improved correlation of the EnKF root-zone soil moisture results 

with benchmark values for most of the un-masked regions of the Midwest and Pacific 

regions, particularly in northern Texas, Oklahoma, Kansas, and within the Ohio River 

Basin. Negative delta RMSE values are found for much of the lightly-vegetated or bare 

soil regions of the domain, with a majority of the improvements in RMSE being greater 

than 0.016 cm
3
/cm

3
. Degradation of root-zone RMSE indicated by positive (blue) 

shading in the figure is limited mostly to Iowa, Minnesota, and Wisconsin. These areas of 

degradation are relatively isolated and of small intensity (majority lower than 0.06 

cm
3
/cm

3
) yet indicate error introduced into the moisture estimates from the assimilated 

AMSR-E observations. Some possible explanations for this introduced error are 

discussed below. 



 

                    
Figure 3. Root-zone delta RMSE soil moisture results over North America for the 5-year data 

denial experiment. Negative (positive) values shaded in red (blue) indicate areas of improvement 

(degradation) relative to the open loop upon application of the EnKF. 

 

                   
Figure 4. Root- zone delta r soil moisture anomaly results over North America for the 5-year 

data denial experiment. Positive (negative) values shaded in red (blue) indicate areas of 

improvement (degradation) relative to the open loop upon application of the EnKF. 

 

 

 In a similar manner to Figure 3, Figure 4 illustrates root-zone anomaly delta r for 

the same time period. Positive (red) gains in correlation coefficients indicate that the 

assimilation of AMSR-E surface soil moisture retrievals is enhancing IPAD’s ability to 

characterize soil moisture anomalies (by creating a higher degree of consistency with the 

benchmark results).  Conversely, negative (blue) values indicate areas of degradation 

with respect to the benchmark run upon implementation of the EnKF.  Positive soil 

moisture impacts are observed along a wide swath of the central United States. Negative 

differences are generally restricted to mountainous (e.g. Western Colorado, Western 



Wyoming and Idaho), closed canopy shrub land areas (e.g., Eastern Montana, Central 

New Mexico) and/or heavily vegetated regions (e.g. the Upper Midwest) known to be 

challenging for soil moisture remote sensing at the 10.7 GHz frequency used here. 

However, the spatial pattern of improved root-zone soil moisture correlation is similar to 

the delta RMSE results, with well-defined increases of delta r (predominantly greater 

than 0.08) along the Southern United States.  The calculation of significance levels for 

these correlation improvements is complicated by the presence of substantial temporal 

and spatial auto-correlation within root-zone soil moisture fields [27].  However, even 

very conservative hypothesis testing indicates that the large-scale pattern of improvement 

in the Southern United States is significant at a 95% confidence level.  In addition, it has 

been shown that even modest improvements in correlation-based skill are often of great 

value in operational settings [2].     

 

            
Figure 5. Box plot of root-zone delta r soil moisture anomaly results over North America for the 

5-year data denial experiment. Positive values indicate areas of improvement over the open loop 

realized upon AMSR-E soil moisture data assimilation. Land cover values are: 1-wooded 

grasslands and shrubs, 2-closed bush lands, 3-open shrub lands, 4-grasslands, 5-croplands, and 6-

bare soil.  

 

 Poor performance in desert areas of Southern Arizona and Nevada reflect known 

difficulties with microwave-based surface soil moisture retrievals in highly arid regions.  

In contrast, the spatial pattern of negative delta r values near Minnesota and Iowa in 

Figure 4 is more difficult to interpret. The removal of the cold season from the analysis 

should mask the potential degrading impact of ground snow cover on AMSR-E retrievals. 

Several other potential factors may contribute to poor results in this area.  First, this area 

has an extensive network of wetlands, rivers, and streams.  In addition, it is relatively 

densely vegetated; the primary crop grown in these regions is corn which can exceed 5 

kg/m
2
 during the growing season. Both of these factors can have a negative impact on 

AMSR-E soil moisture retrievals. Also, it is evident from the AWC dataset that this 

region also has a higher maximum water capacity (> 25 cm) than most other areas of 

North American (not shown). The combination of high AWC and low annual 



evapotranspiration in these areas may lead to slowly varying root-zone soil moisture 

dynamics and therefore little basis on which to evaluate the improved detection of 

temporal root-zone soil moisture variations.  

 

 Figure 5 sub-divides the root-zone delta r correlation results in Figure 4 into 5 

main land cover classes included in the study to demonstrate the effectiveness of the 

system over selected land cover types. Land cover classes shown are: 1-wooded 

grasslands and shrubs, 2-closed bush lands, 3-open shrub lands, 4-grasslands, 5-

croplands, and 6-bare soil. Each box is a culmination of all pixels of similar land cover. It 

is evident from the figure that there is a net improvement (i.e., positive mean delta r value 

as shown by the horizontal line) for all land cover classes – with an overall mean increase 

in delta r of 0.04. Pixels dominated by grasslands (i.e., land cover 4) show the most 

improvement with a mean delta r value of 0.05. The analysis also indicates that the filter 

performs reasonably well in croplands, giving a mean increase in delta r of 0.04. 

Improvements in such agricultural areas are, of course, the highest priority for the USDA 

IPAD DBMS.  However, there are areas of reduced performance. The delta r analysis 

varied most over pixels dominated by land cover type 2 (closed bush lands). Some of this 

variance can simply be explained by the diversity of land surface conditions encapsulated 

within the rather broad “closed bush lands” classification (e.g., evergreen, deciduous, and 

herbaceous vegetation found within areas of varying topographic relief).  This leads to a 

large number of pixels of mixed performance being lumped into land cover type 2 

relative to  the other land cover types (e.g., 3449 pixels are classified as land cover type 2 

versus 615 for land cover type 5). In addition, AMSR-E performance over areas of 

wooded grassland (i.e., land cover type 1) and closed shrub lands (i.e., land cover type 2) 

is not expected to be optimal due to vegetation density limitations (see Section 2.A). Still, 

the assimilation of AMSR-E observations into the IPAD modified Palmer model 

improves root-zone anomaly correlations for many pixels within these domains and 

demonstrates the utility of this methodology. 

 

 This analysis attempts to define the contribution of integrating AMSR-E soil 

moisture retrievals into the drought detecting capability of the USDA IPAD soil moisture 

model. Given that the TRMM 3B40RT rainfall product (used to force the open loop case 

within the data denial experiment) accurately reflects the quality of real-time rainfall 

accumulation data available in data-poor areas, results in Figures 2-5 provide a credible 

estimate of the added utility provided by AMSR-E surface soil moisture retrievals for 

drought applications (like the USDA IPAD DSS) requiring near real-time root-zone soil 

moisture estimates within (potentially) data-poor land regions.  Net improvement is noted 

in our ability to track root-zone soil moisture temporal dynamics (Figures 2, 3 and 4) and 

is observed for all non-forested land cover types within the North American study 

domain – most notably cropland areas of prime importance for the IPAD agricultural 

drought DSS (Figure 5).  The data denial experiment conducted here is limited in that it 

focuses solely on the ability of AMSR-E soil moisture retrievals to reduce modeling 

errors associated with poor-quality rainfall errors.  However, for global modeling 

applications based on real-time rainfall observations obtained from satellite sensors, such 

errors are expected to be large, and may dominate the total modeling error budget [28-

29]. Follow-up work with an alternative data denial design is required to examine the 



potential skill associated with correcting other error sources (e.g. the poor internal 

estimation of evapotranspiration by the model). In addition, our data denial experimental 

design can be extended by employing soil moisture estimates from each model run within 

a crop forecasting model. In this manner, the value of integrating AMSR-E soil moisture 

retrievals into the IPAD modified Palmer model can be further evaluated by identifying 

times of water stress on crop forecasts initialized by each model run. 

 

5.  Current Status of Operational Deliveries 

 

 Using the data assimilation system described and validated above, the following 

global soil moisture products are currently being operationally delivered to USDA FAS: 

 

1. A global AMSR-E soil moisture product re-scaled into the soil moisture 

climatology of the FAS IPAD water balance model (Product 1). 

 

2. A global soil moisture anomaly product based on subtracting a 31-day moving 

window climatology from Product 1 (Product 2). 

 

3. A surface-zone soil moisture data assimilation product between 50° S and 50° N 

based on the assimilation of Product 2 into the FAS IPAD water balance model 

using an EnKF (Product 3a).   

 

4. A root-zone soil moisture data assimilation product between 50° S and 50° N 

based on the assimilation of Product 2 into the FAS IPAD water balance model 

using an EnKF (Product 3b).   

 

Final binary data output files are in the WMO GRIB Edition 1 format.  All products are 

produced at ¼° lat/long resolution in 3-day composites for global coverage and made 

available at a maximum latency of 4 days.  Figures 6 and 7 contain an example image of 

Products 3a and 3b, respectively, for a recent day (July 18, 2010).  Note that some non-

agricultural areas have been excised (e.g. the central Sahara) from the images.  Plans are 

in place to maintain such deliveries through the mission life of the AMSR-E sensor.   

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 
Figure 6.  Product 3a (surface-zone soil moisture derived from the EnKF data assimilation 

system) for July 18, 2010.  

               
      
Figure 7.  Product 3b (root-zone soil moisture derived from the EnKF data assimilation system) 

for July 18, 2010.   
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